home *** CD-ROM | disk | FTP | other *** search
- program trap2; { -> 266 }
- { integration by the trapezoidal rule }
-
- const tol = 1.0E-4;
- var sum,upper,lower : real;
-
- external procedure cls;
-
- function fx(x: real): real;
- { find f(x)=1/x }
- { watch out for x=0 ! }
- begin
- fx:=1.0/x
- end;
-
- procedure trapez(lower,upper,tol: real;
- var sum : real);
-
- { numerical integration by the trapezoid method }
- { function is FX, limits are LOWER and UPPER }
- { with number of regions equal to PIECES }
- { fixed partition is DELTA_X, answer is SUM }
-
- var pieces,i : integer;
- x,delta_x,end_sum,mid_sum,sum1 : real;
- begin
- pieces:=1;
- delta_x:=(upper-lower)/pieces;
- end_sum:=fx(lower)+fx(upper);
- sum:=end_sum*delta_x/2.0;
- writeln(' 1',sum);
- mid_sum:=0.0;
- repeat
- pieces:=pieces*2;
- sum1:=sum;
- delta_x:=(upper-lower)/pieces;
- for i:=1 to pieces div 2 do
- begin
- x:=lower+delta_x*(2.0*i-1.0);
- mid_sum:=mid_sum+fx(x)
- end;
- sum:=(end_sum+2.0*mid_sum)*delta_x*0.5;
- writeln(pieces:5,sum)
- until abs(sum-sum1)<=abs(tol*sum)
- end; { TRAPEZ }
-
- begin { main program }
- cls;
- lower:=1.0;
- upper:=9.0;
- writeln;
- trapez(lower,upper,tol,sum);
- writeln;
- writeln(chr(7),'area=',sum)
- end.